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Methods developed in the mathematical theory of the averaging of processes in periodic media are used to derive two-dimensional 
equations describing the propagation of waves in non-uniform anisotropic plates with a periodic structure. Equations of higher 
order of accuracy in a small parameter - the ratio of the typical thickness of the plate to the typical wavelength, are derived. 
The case of uniform isotropic thin plates is considered in detail. Equations of different order of accuracy, derived in this paper, 
are analysed and compared with the equations proposed by others. Some corrections for the coefficients in Timoshenko-type 
equations, which increase the accuracy of these equations, are proposed. © 2005 Elsevier Ltd. All rights reserved. 

The purpose of this paper is to obtain two-dimensional equations of higher order of accuracy, describing 
the flexural vibrations of plates with a periodic structure, in particular, laminated anisotropic plates, 
without any a priori assumptions on the structure of the displacements and deformations in the plate. 
The solution of this problem enables the numerical solution of three-dimensional non-stationary 
problems to be validly reduced to the numerical solution of two-dimensional or one-dimensional non- 
stationary problems, which considerably diminishes the volume of computation required. 

Approximate two-dimensional equations of different degrees of accuracy have been derived by many 
authors for thin plates (see the review devoted to the refined equations of the vibrations of rods and 
plates in [1]). Existing publications conventionally can be divided into two group. In the first group, 
certain a priori assumptions are made regarding the plate deformation process. Using the simplest 
assumptions, the widely known Kirchhoff classical equations are obtain [2], and, taking additional 
possible effects into account, the so-called exact (non-classical) equations are obtained, in particular, 
Timoshenko-type equations [1, 3, 4]. The second group is based on the assumption that the displacements 
can be represented in the form of series (or, with a certain accuracy, by polynomials) in powers of the 
coordinate perpendicular to the middle plane of the plate. This approach was used, in particular, by 
Selezov [5] to derive equations of higher order of accuracy for the flexural vibrations of plane uniform 
isotropic plates. 

Below we derive two-dimensional equations of higher order of accuracy using the two-scale expansions 
method in the form used in the theory of averaging of processes in periodic media [6-9]. In this approach 
no a priori assumptions are made regarding the nature of the deformation or regarding the form of 
the dependence of the displacements on the normal coordinate. Instead of this, we use the assumption 
that the displacements can be represented in the form of asymptotic series in powers of a small parameter 
e, equal to the ratio of the typical thickness of the plate to the typical wavelength. When additional 
limitations are imposed on the data of the problem this assumption can be rigorously justified (see 
Section 11). 

In this way we can obtain two-dimensional equations of any accuracy in e, and also the distribution 
of the displacements inside the plate. In the case of the a plane uniform plate, the displacements, in 
fact, can be represented with any accuracy in the form of a polynomial in powers of the normal 
coordinate. However, in the case of non-uniform plates the displacement vector may depend on the 
spatial variables in a more complex way. We used the proposed approach in the general case of plates 
that are non-uniform in thickness and periodic in longitudinal directions. 

tPrikl. Mat. Mekh. Vol. 69, No. 4, pp. 656-675, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.07.009 
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1. F O R M U L A T I O N  OF THE T H R E E - D I M E N S I O N A L  P R O B L E M  OF 
THE VIBRATIONS OF THE ELASTIC PLATE 

We will call an infinite periodic plate a certain connected set H of a space R3 with a Lipschitz boundary 
bFI, lying in the strip Ix31 -< H3/2 and periodic in the variables xl and x2 with periods/-/1 and/-/2 
respectively. When simply connectedness requirements is dropped, there is the possibility that there 
are pores in the plate. We will also assume that the density p(xl, x2, x3) and the matrices of the elastic 
moduli Aiy(xl, x2, x3). are measurable, bounded, and periodic in the variables Xx and x2 with periods H1 
and H2 respectively. We will further assume that all the quantities H s are of the same order. 

The three-dimensional system of equations of the vibrations of the plate 17 has the form 

m a r a u ' ,  
Z,u = - p a2u +  t.a,Sa-x--] ijat a = - r  (1.1) 

When F is the density of the bulk forces, and summation is carried out over repeated subscripts in the 
limits from 1 to 3. 

On the surface of the plate, the distribution of the force is specified. 

a u  I 
Aif'--nil = g (1.2) 

Oxj larl 

Here n i are the components of the vector n of the normal to the plate surface. 
Suppose ~ and ~ are the mean values of the density P and of the propagation velocity of waves in 

the components comprising the medium,/5" is a typical value of the displacement and L is the typical 
length of the wave propagating in the plate. Further constructions are carried out on the assumption 
that 

H 3 
E =  - - ~ 1  

L 

Introducing dimensionless variables using the relations 

t' tO , x jH3 
= Z '  xj = u ' =  0 . 3 )  

we obtain a system of equations and boundary conditions, which differ from system (1.1) with conditions 
(1.2) in that the quantities without primes are replaced by the corresponding quantities with primes, 
defined by formulae (1.3) and following expressions 

' Aq £2L2 p, P, F ' =  FL2, g '= gL2E , n jHj  
aij = ~ . - - ' ~ ' ~ . .  ~2' = ~ ~]~.'"~ ¢ ^2~2f-~,,2' nj = 

PHiHjc  ~)uc 4n ,  rtk 
(1.4) 

Henceforth we will omit the prime and we will use relations (1.1) and (1.2) for references to the 
formulation of the problem. After replacing the variables, the functions P and Aij will be periodic in 
the new variables xa, x2 with periodic e, and the plate is situated in the strip Ix3 ] < s/2. 

If the functions 9, Aij and F do not possess sufficient smoothness, we will understand the satisfaction 
of relations (1.1) and (1.2) in the sense of Sobolev, namely, we have in mind that u is a vector function 
of H~oc, which satisfies the integral identity 

-~ i i  0II 

(1.5) 

for any finite infinitely differentiable vector function q0(t, x). 
The purpose of our further constructions will be to transfer from the three-dimensional problem (1.1), 

(1.2) to two-dimensional equations of the vibrations of plates of high order of accuracy in the dimension- 
less parameter e. 
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2. A P P L I C A T I O N  OF THE P R O C E D U R E  OF A V E R A G I N G  P R O C E S S E S  
IN P E R I O D I C  M E D I A  TO D E R I V E  THE T W O - D I M E N S I O N A L  

E Q U A T I O N S  OF THE V I B R A T I O N S  OF PLATES 

To obtain approximate two-dimensional equations of the vibrations of a plate of higher order of accuracy 
we will use the formal procedure of the method of averaging processes in periodic media [6-8] with 
the explicit use of the condition that there are no forces applied to the plate surface [9, 10] 

AijO~jxj ni 3 n  = 0 (2.1) 

To derive the equations of infinite order of accuracy in e in the case of boundary conditions (2.1), 
we will seek an asymptotic expansion for the displacement in the form 

eq + t' +12N~12 (Y l, Y2, ~q + ll +12V 
U - -  ¥ + 0 < q + l l  +Is y3)lyj=xjleotqOxlllOX ~ (2.2) 

where v = v(t, xl, Y2) is a smooth function of the slow variables t, xl and x 2 with characteristic scale of 
variation of the order of unity, N~tz(Yl, Y2, Y3) is a 3 x 3 matrix, periodic with a periodic of unity, with 
respect to the fast variables Yl and Y2, and yj = xj/e. The characteristic scale of variation of N~l~ in the 
variable xj is of the order of e. The prime in the notation of the sum here and below denotes that all 
the integer non-negative q, ll and 12, belonging to the limits under the summation sign, participate in 
the summation; if these limits are not indicated, the summation is carried out over all the integer non- 
negative indices q, ll and lz. 

The sign - in relation (2.2) denotes that the right- and left-hand sides differ by a quantity O(e ") for 
any value n. Below, this sign will sometimes denote closeness of the order of e" for a specific value of 
n, this will be clear from the context. Further, N0°0 = E is the identity matrix (or the identity operator), 
and Nqlt~ = 0 if at least one of the indices is negative. After substituting series (2.2) into system (1.1) 
in the case of smooth P, Aij and Ntql~ we have 

~q+ll+l 2 
~l~q+ll+12 -2  .q O ¥ 

Lu 
ot Ox I o x  2 

where 

H q T q LyyN = ~ : ON'X Ill2 = tyyN~ll2 dr ill2, ~yi~Aij~yj) 

T q ( j ) ~ (  ~ ~f-~jAr~, lit2 = ~ . Aij  -8y ,12-5 j2 )+~( i )A i j  . -Sa, 12-Sn + (2.3) 

+ 8(i)8(j)AijN~q-8,,-8,,,t~-~,~-8,2- PN~t~ z' 8(i) = 1 - 8i3 

After substituting series (2.2) into condition (2.1) we have 

On -~Eq+l'+t2 2 -q+'~l+12_.~.. 
AiJ~x----~ ni a n  - "~ q d v 

Hzd2 = ~ u ~yj 

0 2 It follows from relations (2.3) that the coefficient H00 of e- is equal to zero. We will obtain N~lt2 such 
that the coefficients Hi°0 and H'°l for terms of the order of ~-1 will be zero, each of the expressions H~12 
being equal to a certain constant matrix q hl112 , i.e. 

H q = h q ltl2 ill2 = const  Vq, 11, l 2 (2 .4)  
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and moreover, the following inequalities are satisfied 

^q 
Hi,12 = 0 Vq, Ii, l 2 (2.5) 

We will denote by f2 the set of pointsy = (Yl, Y2, Y3), which satisfy the conditions (YlG Y2 E, Y3 e) E H, 
and by D.y a periodicity cell, i.e. a set of points y which satisfy the conditions 

0 < y l _ < l ,  0<Y2_<l, y e  f~ 

Instead of the satisfaction of equalities (2.4) and (2.5) we can require the satisfaction of the integral 
identity 

(A ~[N~t12]m + ~(i)Aiy[N~tl_Sj,,12_8i2]m, ~Yi)- 

- (8(J)Aq ~'~j[ N~ll -.n, 12-8,2]rn + 8( i)~)(j)Aij[ N~t, -~n -,,p l2-'a-6,2]rn - 

= ([ td~]m'~) dy Vm 
f~y 

(2.6) 

for an arbitrary vector function ~p(y) ~ H1(£"2), periodic with a period of unity in the variable Yl and Y2. 
Here (f, g) = fig1 + fzg2 + f3g3 is the usual scalar product and [A]m is the notation of the mth column 
of the 3 x 3 matrixA. In the case of non-smooth, in particular, discontinuous P andA0, the use of integral 
identity (2.6) is connected with the essence of the problem, since then the solution u is determined in 
a generalized sense, which satisfies identity (1.5). 

If relations (2.4) and (2.5) are satisfied, we obtain a system of equations of infinite order with constant 
coefficients 

~q+ll +l 2 
LV ~ £ ~q + II + 12- 2. q O V -- -F  

Ptlll2~q ~ ll..~ 12 
q+l~ +1222 0 tOX 10X 2 

(2.7) 

which can be used instead of system (1.1) with condition (2.1). We have the following in mind: if v is 
the asymptotic solution of system (2.7), the displacement u, defined by relation (2.2), asymptotically 
satisfies relations (1.1) and (2.1). All the above make sense for infinitely differentiable v(t, xl, x2) and 
F = F(t, xl, x2). The case when F also depends onyj = x/e, is considered in Section 10. In Section 11, 
we justify the equations of finite order of accuracy in e on the assumption of the finite smoothness of 
v and F with respect to t, xl and x2. 

Henceforth, when Q = Q(t, Xl, x2, x3, yl, y2, y3) we will use the notation 

r (Q) Q(t, y3)dyldy2dy3 J Xl, X2, X3, Yl, Y2' 
f~r 

where t, xl, x2 and x3 are fixed. Integrating Eq. (2.4) over a period, taking relations (2.3) and (2.5) into 
account, we obtain 

= = 

(2.8) 

where ~ is the measure of the se t  ~"2y. Note that for the usual assumptions in the theory of elasticity, 
q q 

the satisfaction of the equality ~htl 6 = Tt~ h also turns out to be sufficient for system (2.4), (2.5) to be 
solvable in q Nl l l  2" 



Equations of higher order of accuracy describing the vibrations of thin plates 597 

We can construct Nlqt2 successively, by first ordering the set of indices (q, 11, 12), satisfying the order 
of increase of q + ll + 12. The matrices Nlql2 are found from Eqs (2.4) and (2.5) or non-uniquely from 
integral identity (2.6), apart from a term equal to a certain constant matrix,. We will choose this term 
so that the equality q (Ntl12) = 0 is satisfied every time. It can then be seen from the structure of relations 
(2.3) and (2.8) that h~112 = 0 when q is odd. Moreover, as follows from the constructions in [8], the matrices 
hlq12 satisfy the relation 

(h~d2) r (--1 ~(l'+12)t,q 
= 1 ~ l l l  2 

If the plane plate is only non-uniform in thickness, i.e. the properties of the material depend only 
on one spatial variable Y3 = x3/e: P = P(Y3), Ai i=  Aij(Y3), the matrices N~I~ depend only on Y3- In this 
case all the Nqlt~ and h~lt~ are calculated in quadratures. A special case of th~s plate is a plate consisting 
of plane uniform and, i'n general, anisotropic layers. For such plates the coefficients hq~12 in Eqs (2.7) 
were investigated in [11, 12], in which only terms with derivatives no higher than the fourth order were 
retained. Terms of derivatives of the third and fourth orders are the principal terms responsible for the 
dispersion of the waves. Types of dispersion of waves in plates with a different number of layers, 
possessing different types of anisotropy, have been investigated. 

3. THE E Q U A T I O N S  OF THE V I B R A T I O N S  OF A P L A N E  U N I F O R M  
I S O T R O P I C  PLATE 

We will further consider a plane uniform isotropic plate, occupying the volume Ix31 < H3/2. We have 
the following formulae for the dimensional components (Aij)kl of the matrices Aij 

(Aij)kl : ~SikSjl + ~[(SijSkl + 8ilSjk) 

where )~ and g are the moduli of elasticity. We will put 

O:p,  (3.1) 

Since the properties of a plane uniform plate are periodic with any period, we can take H1 = H2 = 
Ha = H. Formulae (1.4) for the dimensionless quantities in this case take the form 

, = Aij p, FL 2, g, ~gL, , 
Aij  --~,  = 1, F' = = n j  = n j  

(3.2) 
, 2v 8 8  (Ao )u  : 1 - -~v  ik j l  + 8/j8U + 8;18jk 

(v is Poisson's ratio). 
We will investigate flexural vibrations, which are described by the third component v3 of the vector 

v. Henceforth we will use the following notation: Dt is the operator of differentiation with respect to 
t, and A is the Laplace operator in the variables Xl and x2. Calculations showed that system (2.7) can 
be split into a system of equations in the unknowns vl and 1)2 and an equation in v3, having the form 

! 

2 c2q + 21 - 2~12ql-~,2qAl 
Dt  1)3 = L1)3 + F3 + o(eS); L1)3 = E G "aEl ' t  '-" 1)3 (3.3) 

2~q+/<4 

where 

2 1 o 1 
A20 q = 0 when q>  1, A2 -- ] '2 '  A4 = 6 (1 -V)  

4 1 2 V 2 - -  26V + 24 A 0 = V - 6 
A2 = - ] ' ~ '  A4 - 720 (1 -v )  2 ' 180(1-v)  2 

6 17 4 18V 3 -- 360V 2 + 646V -- 305 
A2 = 2()i-60' A4 = 60480(1-V) 3 

(3.4) 
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2 - V  3 + 57V 2 - 374V + 304 0 - 3V 2 + 34V-- 101 
A 6 = , A 8  = 

30240(1 - V )  3 15120(1 - V )  3 

In the case of  purely flexural vibrations, when vl  = 132 = 0,  the third component  u 3 of the displacement 
vector u is related to ~3 as follows: 

! 

2(q+l) 2q(X3~l-~2qA l, 
U3-1)3+SD3' SD3- E E "2/~'~-) x-'t ~ 3  (3.5) 

l'~q+l 

where 

o v(12y 2 -  1) 4 
n~(y) = 0, nE(y) = 2 4 ( 1 - v )  ' n°(Y) = 0 

n2(y) = 240(1 - 2v2)y 4 + 120(6v 2 - 4v - 1)y2 _ 54v 2 + 40v + 7 

11520(1 - v )  2 

nO(y) = 240(v 2 - 1 )y4  _ 120(v z _ 4v - 1)yZ + 7v 2 _ 40v - 7 

5760( 1 - v)  2 

Further, when Q = Q(t, xl, x2, X3) we will use the following notation for the mean value of Q over the 
plate thickness 

el2 
1 

{Q} = ~ j" Q(t, x 1, x 2, x3)dx 3 
-el2 

oq+ll+12~) 3 
I f  Q = Qx(x3/e)Q2(t, Xl, x2) , we have {Q} = (Q1)Q2. In relation (3.5) the factor is independent 

~tq~X~l~x 12 
Zq 

of the variablesy3 and x3, while the factors n z  (x3/e) are independent of the variables Xx and x2. Moreover, 
{n~} = (n~) = 0 as a consequent of the fact that (N~12) = 0, when q + l 1 + l 2 > 0. Hence  

{ S o 3 } - 0 ,  V - { u  3 } -  I) 3 (3.6) 

Here  the sign - denotes equality with accuracy O(e n) for any n, and we denote by V the value of the 
displacement u3 averaged over the thickness. 

Note that relation (3.6) holds for any plane plate, both isotropic and anisotropic, that is only non- 
uniform over the thickness. 

4. R E D U C T I O N  OF T H E  P R O B L E M  OF T H E  V A R I A T I O N S  OF 
A P L A T E  W I T H  N O N - H O M O G E N E O U S  B O U N D A R Y  C O N D I T I O N S  TO 

A P R O B L E M  W I T H  H O M O G E N E O U S  B O U N D A R Y  C O N D I T I O N S  

We described above a procedure for obtaining two-dimensional equations of  the vibrations of a plate 
in the case when the plate surface is load-free; we will now consider the general case, when g is not 
necessarily zero. The solution of the initial problem is the sum of the solutions of the following problems. 

Problem E The plate surface is load-free: condition (2.1) is satisfied. 

Problem G. There are no mass forces (F = 0), and the distribution of the forces, according to condition 
(1.2), is specified on the plate surface. 

For a plane uniform isotropic plate, we obtain the equations of flexural vibrations for Problems F 
and G in terms of the value of V, which we will call the FV and G V  equations, and also in terms of the 
displacement of the middle plane U = u3(t, Xl, x2, 0), which we will call the FU and G U  equations. 
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We will consider the case when the forces applied to the surface of a plane of plate are directed along 
the normal, i.e. 

A OU = g±(t ,  x l, X2)e 3 (4.1) 
3 J ~ x j  x 3 = +el2 

We will represent the solution in the form of the sum of solution with gl+ = _g1_ = ge3/2, where 
g = g+ -g_, and g2 = _g2_ = (g+ + g_)e3/2. For plates possessing a definite symmetry about the plane 
Y3 = 0, in particular, plane uniform isotropic plates, in the second solution the displacement u3 along 
the x3 axis is odd about the x3 = 0 plane, and hence the displacement of the middle plane of the plate 
along the x3 axis is equal to zero: u3(t , Xl, x2, 0) = 0. The quantity V -  the average of u3 over the cross- 
section, is also exactly equal to zero. Since we are investigating flexural vibrations, when constructing 
the GV and GU equations we will confine ourselves to considering the solution with the condition 

g+ = -g_ = ge3/2 (4.2) 

Construction of a special particular solution of the problem with non-homogeneous boundary 
conditions. To reduce the problem with non-homogeneous boundary conditions to a problem with 
homogeneous boundary conditions it is sufficient, for a specified vector function g, to construct the vector 
functionU, which satisfies the relations 

A ~ LU = f(t, gl, X2),  ijOg~.i~)n = g (4.3) 

with a certain so-far unknown vector function f(t, xl, X2). In the case of a plane plate, only non-uniform 
in thickness, this problem has the following specific form: for specified g_+ (t, xl, x2) we will seek a vector 
function fJ(t, xb  x2, x3/e), which satisfies the relations 

LU= -p(?)DIIU+ ~'-~-(A ( x3`)~J`)= f(t, xl, xl) ~Xik iJ L E ,}~Xj) (4.4) 

A (4.5) 3J3xJ ~'3 = ±e/z = g±(t, x l, x z) 

Equation (4.4) is equivalent to the equation 

B 

X3 2 

bX3bXi~ C ,) j) (4.6) 

We will replace the independent variable x3 = ey in Eq. (4.6) and boundary conditions (4.5), and we 
will seek a solution in the form of the series 

o n  

rJ - Z Un(t' xl'  x2' y)en 
n = l  

Equating the coefficients of like powers of e in the equations obtained, we arrive at the system of 
equations 

02 (A oun") ( 02 " OU n- l .  0z . OU n- 1. 

02 " Ou"-2" ~(02U.-2")  + ) -  j : °  
(4.7) 
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and the boundary conditions 

A 8U" . o ~ U  n - 1  . 3 U " - l ) J  = G,,zg ± 
33"-~--Y + A31-"~XI + A32-"~X2 ) y =+1/2 

Here U -1 = U 0 = 0. Equations (4.7) are ordinary differential equations in the variable y for un; the 
variables t and x occur in them as parameters. Consequently, beginning with n = 1, we can obtain the 
vector functions Un(y) in quadratures. They are determined, apart from a constant term; we will always 
choose it so that the relation (U n) = 0 is satisfied. After finding U n, using formula (4.4) we find f - LU. 
A similar algorithm for constructing the required particular solutionU can be proposed in the general 
case (4.3); however, the function U n, as a rule, is then not necessarily found in quadratures. In the case 
of a plane uniform isotropic plate, with boundary conditions (4.2), the values of the components Oi 
and)~ of the vectorU and fwere  calculated with a high degree of accuracy. In this case 

U, ly=O=0, ~'2ly=O=0, f l -=0 ,  f2-=0 

Below we present expressions for f3 and 03 l y = 0 with an error O(a 5) 

f3 = g- + r a g  + E3(12V2- 1 0 v -  1)D~-  2(V 2 -  10V - 1)AAg 

e e ~  1440(1 _ V)2 

^ (2V-  1)g a7( 4 v E - 4 v  + 1)D~ + 4(13v2 + 7v) A 

U3ty = 0 = t'4--~['.._" ~ + • 23040(1 - V) 2 g 

(4.8) 

In the case of discontinuous 9 and Aij, instead of differential equations, we consider corresponding 
integral relations of the form (1.5). 

Reduction of the problem with non-homogeneous boundary conditions to a problem with homogeneous 
boundary conditions. Suppose the FV equation is obtained and has the form 

D~V - LV + PF 3 (4.9) 
A A 

with certain differential operators L, P We will show how one can obtain from Eq. (4.9) equations 
corresponding to the other problems formulated above. 

The GVequation. Suppose u is the solution of Problem G with F = 0 and non-homogeneous boundary 
condition (4.1). The difference w = u - U satisfies the equality Lw - - f  c f - LU and the homogeneous 
boundary condition. Hence V ' -  {w3} satisfies Eq. (4.9) with F 3 = f3. Equalities (3.5) and (3.6) take the 
form 

Further 

! ! ! 

W 3 = U 3 -- 03 -- D 3 + S1)3, V' --- {w3} - v 3 (4.10) 

V m { u 3 }  = { 0 3 + w 3 }  = V' 

since {/_73} = 0. Hence, we obtain the following equation for V 

D~ V - L v + /by3  

The FU equation. By relations (3.5) and (3.6) we have 

2(q + 1) 2q,, .~,~2q_l. ,  
U -  V + SoV,  S o V -  Z '  E n2l[U)l.) t a v 

O<q+l 

(4.11) 

(4.12) 

(4.13) 

Applying the operator E + So to Eq. (4.9) we obtain the equation 

D ~ U -  L U  + P ( E  + S0)F  3 (4.14) 
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The GU equation. We will put Uo(t, xl, x2) = U3(t, Xl, x2, 0), and in the first of relations (4.10) Y3 = 0; 
taking the second of relations (4.10) and equality (4.11) into account, we obtain 

U- U o-  ( E + So) V 

We apply the operator E + So to Eq. (4.12) 

D2 ( E + So) V - L( E + So) V + ( E + S0)/bf3 

Adding this equality to the identity 

D~U o = t v  o + (D~U o-LUo) 

we obtain the equation 

D~U - LU + D~U 0 - LU o + ( E + S0)/3f3 (4.15) 

5. EQUATIONS OF ACCURACY O(e 3) A N D  O(E 4) 

Henceforth we will mean by equations of accuracy O(e n) equations in which the neglected terms are 
of the order of e n. We then assume that F and g are of the order of unity. In fact, in different situations 
F and g may be small of different order. For example, in typical cases g is of the order of e. Then, the 
accuracy of the equations derived below, containing g, will be one greater than indicated in the text. 

3 4 Consider equations of accuracy O(e ) and O(e ). Equation (3.3), taking formulae (3.4) into account, 
can be written in the form 

D~V = ~2/'~ ~'-~/')t'al ~2. 6(11- V)A2)V + F3 + O(E4) (5.1) 

We will carry out equivalent transformations of Eq. (5.1) in order to eliminate the mixed derivative 
of Vwith respect to t and x. Differentiating Eq. (5.1), we obtain 

D~AV = AF 3 = O(e 2) 

Substituting this expression for D2AV into Eq. (5.1), we obtain the following equation of the form FV 
of accuracy O(e 4) 

D ~ V - - E 2 - - - ~  A 2 V 6 ( 1  - + F3 + E2 l~AF3 (5.2) 

From Eq. (5.2), proceeding in the same way as when deriving Eqs (4.12), (4.14) and (4.15), and using 
formulae (4.8), we obtain equations of the form GV of accuracy O(e 3) 

D~V = E 2 --1 AZv 1 1 
6- ' - ] -~  + eg + e ~ A g  

of the form FU of accuracy O(e 4) 

D~U = e26(fl- V) A2U + F3 + e224(12- 3V_ v)AF3 

and of the form GU of accuracy O(E 3) 

(2v -  1)D~ + 2(2-v)A D~U = e2 ~ l  .,A2U 1 
~ - v ) 5 (  - + ~ g + e  48(1-v)  g (5.3) 
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We recall that this equation is written in dimensionless variables. In dimensional variables it takes the 
form 

2 H2E A2U 1 1 + v ) ( 2 v -  1)pD~ + 2 ( 2 -  v)EA 
pDtU= 1 2 ~ V  2 ) + H  g + H 2 (  48(1 - v ) E  g 

Here E is Young's modulus. This equation differs from the classical Kirchhoff equation [2] in that it 
contains an additional term containing derivatives ofg. 

When F ¢ 0 and g g 0 the required equations were obtained by adding the equations derived above. 

6. THE E Q U A T I O N S  OF A C C U R A C Y  O(e 5) AND O(E 6) 

Before we obtain from Eq. (3.3) analogous equations of accuracy O(e 5) and O(e6), we will consider the 
well-known equations of accuracy O(eS). 

Selezov's equations. For Problem G equations of the transverse vibrations of a plane uniform isotropic 
plate accuracy O(e 5) in terms of U were obtained in [5] in the following form 

D~U 2, 4 ~ 4  2 2 0 2 
= E (a01) t + a 2 O t A + a 4  A ) U +  

4, 6 ~ 6  4 ~ 4 ,  2 ~ 2 , 2 + a O A 3 ) U + G  
+ E (aOLI t + a2Dt/X + a41.)tl..x 

(6.1) 

where 

4 8 v -  7 z 2 -  v 

a° - 48(1 - v)'  a2 = 6(1 - v ) '  

6 - - 6 4 V 2 +  104v - 41 4 
= a 2 = 

a° 7680(1-v)  z ' 

o o - 1  
a4 = -20a6 - 6 ( 1 - v )  

16v 2 -37v  + 19 2 - 4 v  2+ 16v-  11 
a 4 = 

960(1 -v )  2 ' 4 8 0 ( 1 - v )  2 

(6.2) 

and G is a quantity, defined by the external forces applied to the plate surface. 

1 ( 1 - v ) D ]  + ( v - 2 )  A 
G = -~g+e 8 ( l - v )  g +  

32(1 2 4 _ 7)D~A + 2(v2_ 4v + 3)A 2 - v )  D t - ( 4 v  2 12v+ 
+e  g 

768(1 - v )  2 

(6.3) 

We will show that Eq. (6.1), apart from terms O(eS), can be converted to the following form, not 
containing differentiation of U higher than the second order with respect to time and higher than the 
fourth order with respect to the coordinates 

D~U = ZU + Pg 

The operators L and/3 are defined by the formulae 

(6.4) 

2 (  1...__.A2 17 - 7 v  2 .  "~ 
L = E - 6 ( 1 - v )  -I 6~(~-_viDtzx) (6.5) 

p 1 5 ( 2 v -  1)D~ + 6 ( 3 v -  8)A 
= - + E  + 

e 240(1 - v )  

+ e f l (2v  - 1)2Dr 4 + 2(28v 2 + 2v - 29)D]A - 4(21v 2 + 64v - 78)A 2 

23040( 1 - v) 2 
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This form may turn out to be preferable, since in this case, for a correct formulation of the boundary- 
value problem, no additional initial and boundary conditions are required. ( °/ 2 4 2 a6 We will carry out the following transformations. We apply the operator E + e aoD t - _--~-A to 

\ a4 / 
Eq. (6.1) and add the result to Eq. (6.1); we obtain 

I( °1 i ( D2U 132 a6 2 0 2 4 2 6 = a22+-6 D tA +a4A  U+E 4 (a60+(ao))D t+ 
a4y / 

C 
/ - 0 0 

0 0 4 0 a 6 a 4 ~ - - 2 _ 2 ~ . , .  4 4 2 a6a4")--4-- 2 
+ a 2 + aoa 2 -----U]L~t/x + a 4 - + aoa 4 - - ~ - ] D t A  ]U'l" 

a4 } a4 J J 

2 4 2 a6 5 
+ G + e  aoD t -  A G + 0 ( 1 3 )  

Further, applying the operators e4D4, e4D~A, ~4A2 to Eq. (6.1), we obtain the relations 

4 _ 6 - 2 k .  k. 4--4-2k • k 
e t )  t zx u = 13 /-)t ix t . / + O ( 1 3 6 ) ,  k = 0 , 1 , 2  

(6.6) 

by means of which we can get rid of terms with derivatives of U of the sixth order in Eq. (6.6). Finally, 
taking formulae (6.2) and (5.3) into account, we obtain Eq. (6.4). 

The equation of  accuracy O(e 5) and O(e6), obtained by the method of  two-scale asymptotic expansions. 
From Eq. (3.3) we have the equation 

D~V = 2 2 2 £ (A2DtA +A°A2)V+ 

4 4 4 2 2 2 AOA3)V+Fa+O(e6 ) 
+ E ( A 2 D  t A + A 4 D  t A + 

which is identical in form with Eq. (6.1). Using the transformations employed to derive Eq. (6.4), q and also employing expressions (3.4) forA t, we obtain the following equation of the form FV of accuracy 
O(e 6) (everywhere in this section L is the operator defined by formula (6.5)) 

D~V = LV + F'F 3 (6.7) 

where 

2 (V - 6 )A 46(1 - v ) 2 D  2 + (V 2 + 12V - 12)A A (6.8) 
P = 1 +13 30(1-v)-13 720(1-v)  2 

Note that the difference 5 of the right-hand sides of Eqs (6.7) and (5.2) is a quantity of the order of s 4. 
In fact 

46(1 -v)ED 2 - (v2+ 12v- 12)AAF 3 ---- E2 17- 7v 2 
60(  1 -- V) A(Dt  V - F3) + 13 720(  1 - v) 2 

As a consequence of any of the equation (5.1) and (5.2) we have D E v -  F 3 = O(e2), and hence 
6 = 

After transformations similar to those employed in Section 4, we obtain an equation of the form GV 
of accuracy O(e 5) 

= L v  + Pg 

p 1 7 v - 1 2  . +e3(14v-13)(D~-2A) A 
= 
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an equation of the form FU of accuracy O(136) 

D~U = L U  + P F  3 

= 1_132 v + 2 4  . 4 (150V2-232V+89)D~+2(9V2+88V-89)A A 
120(1 ---v) A - 13 11520(1 - v )  2 

and an equation of the form G U  of accuracy O(135), which is identical with Eq. (6.4), which, as was shown 
above, is equivalent to Selezov's equation with an accuracy up to terms O(135). 

From relation (4.13) we obtain a relation of the form 

' 2 ( q  + l) z_2qr~2qAl • r 
V L E v21 !_1 t za t.J 

Then, substituting the vector v = (0, 0, V) into (3.5), we obtain expressions for the components of the 
vector u in terms of U 

0 U  133y(4y 2 - 3 ) ( v  - 1 ) D ~  + 2 ( 2 ( 2  - v ) y  2 - 3)AOu 
u i -  -13Y'~ixixi + 24(1 - v )  Ox i, i = 1, 2 

2 2  V . .  
/ / 3 - -U-1 -13  y 2(-T~_v)CXtJ + 

4 22y2((1 - 2vE)D~ - 2(1 - vE)A) + (6v 2 - 4v - 1)D~ + 2(4v + 1)AA U 
+13 Y 9 6 ( 1 - v )  2 

These expansions, together with the well-known terms of order 1, 13 and 132 [1] contain terms of higher 
order in 13. 

Note that, when deriving the equations of the vibrations of plates, considerably different equations 
are obtained, although of asymptotically equivalent form. For example, in the case of free vibrations, 
Eqs (3.3), (6.1) and (6.4) have the same accuracy - O(136). At the same time, it can be verified that, for 
the problem of the propagation of plane waves, four characteristics correspond to Eq. (3.3), six 
characteristics correspond to Eq. (6.1) and two characteristics correspond to Eq. (6.4). The choice of 
one form of equation or another depends on the specific problem and the purpose of the investigation. 

7. T H E  E Q U A T I O N S  OF A C C U R A C Y  O(e  8) 

We will convert Eq. (3.3) to another form, in which derivatives of the fourth order with respect to time 
are retained, but derivatives of higher order are dropped, i.e. to the form of Timoshenko's equations 
[1]. In Eq. (3.3) we transfer D2~93 to the right-hand side and apply the operators 132A, 132D2, 13~A 2 and 
134;92A to the equation obtained. Taking into account the fact that 1)3 ~ V, dropping terms O(13s), we 
have, respectively 

0 = - 1 3 2 D ~ A V +  134" .2_2--2(A2Dt/X + A ° A 3 ) V +  

6 4 4 2 2 2 3 
+13 ( A 2 D t A  + A4DtA + A°A4)V  +132AF3 (7.1) 

2 4 4 2 6 0 2 2 
0 = -13 DtV+13 ( A E D t A + A 4 D t A ) V +  

6 4 6 . 2 _ 4 . 2  0 2 3 2 2 
+ 13 ( A E D  t A + + A4D t ,a A6D t A ) V + 13 D t F 3 (7.2) 

4 2 2 6 2 2 3 0 = -13 D t A  V+13 (AEDtA +A°A4)V+134AEF3 (7.3) 

4 4 6 2 4 2 0 2 3 4 2 
0 = - e  DtAV+13 (AEDtA + A 4 D t A  )V+13 D t A F  3 (7.4) 
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We multiply relations (7.1), (7.2), (7.3) and (7.4) respectively by the unknown factors V~2, V 2, V~4 and 
V 2 and combine with relation (3.3); we obtain the equality 

D2t V 2,~4__4 2 2 ~0A2. V 4 4 4 ~ 2 - 2 , 2  QOA3)V + 
= E [(d0Dt + Q2Dt A + ~.4 ) 4" £ (Q2Dt A + ~41)t A 4. 

4.E6(Q2DtA + 6  6 .~4/)t~4--6"2A 4- ~6]-)t~2~2"3/X + Q ° 8 A 4 ) V + f 8  (7.5) 

where 

2 2 2 0 0 0 4 = A 4  + 2 2 2 
Q40 = - V o ,  Q2 = A 2 - V 2 ,  Q4 = A4, Q2 VoA2-V2  

V2A o o o A~ 4. o o Q24 2 V~2A22+ = = A 44- 0 4 - V 4 ,  Q6 V2A4 

Q~ 6 2 4 4 A44+ 0 4 2 2 2 2 
= A2 + VoA2, Q4 VEA2 + VoA4 + VEA2 

Q2 2 0 2  2 0  V~4A2+V2A4 ' Q8 = A6 + V2A4 + VoA6 + 2 0  0 = A 0 + V~4AO + V2A600 

2._2 ~2 + VzOA)F3 4. e4(V~OtZA + V~4A2)F3 f8 = F3 + e (VoU t 

(7.6) 

It follows from Eq. (5.1) that 

D2k+2.1.. D]kAIF3+O(E 2) Vk, 1 t A V  = 

Hence, Eq. (7.5) can be written, with accuracy O(e8), in the form 

D~V = 2 2 2 4 4 e (Q2DtA+ Qo D, + Q°Az)V+ 

4 4 4 - -2 - -2 .2  QOA3)V+E6Q~A4V+PF 3 + 8  (Q2DtA+Q4Dt  A + (7.7) 

Here 

p F  3 6 6 4  ~4_2_2 Q2A3)F 3 = f 8 + £  (Q2DtA+~d4Dt A + 

Timoshenko-type equations. The equations of flexural vibrations in terms of the displacement of the 
middle plane of the plate, which has the form 

= 2 , + 2) o e ( ~ D ~  + 2 2 T2D t A U + (7.8) 

where G is determined by the forces applied to the plate surface, are called Timoshenko-type equations. 
In order for Eq. (7.7) to have the form (7.8), the following equalities must be satisfied. 

¢--0, el=0, o°:0, e°=0 

It follows for these equations and relations (7.6) that 

V ~ = 4 2 2 - 4 2 4 v - 3 3 v  2 o v - 6  2 2 - 4 v - 3 3 v  2 o 1 
4200(1-v)  ' V2 = 3 0 ( 1 - v ) '  V2 = 50400(1 -v ) '  V4 - 12600 

A~er finding the quantit ies~-we obtain the non-zero quantities Q~ 

Q4= 

Q 4 =  

33v 2 + 424V - 422 2 17 - 7v 0 1 6 
4200(1-v)  , Q 2 -  6 ~ i ' - v ) '  Q 4 =  6 ( l - v ) '  02 = 

- 66v 4 + 268v 3 - 247v 2 + 64v - 24 Q2 = 67v 2 - 24v + 12 

1008000(1 - v) 3 ' 504000( 1 - v) 2 

33v 2 - v + 3 
504000( 1 - v) 

(7.9) 

(7.10) 
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Changing from the FV equation to the G U  equation, we have 

D~U = LU + Pg 

where 

(7.11) 

11 ~ A  2 + 17 - 7V 2. 33V 2 + 424V - 422 -4~ 
L =  e 2 ( - 6 ( - v )  6 ~ - i - v )  Dtzx+ 4 2 " ~ - ' ~  o , )  

p = 1 e v)((22v 2+ e 2800(1 - 166v - 223)D 2 + 70(3v - 8 )A ) -  

E 3 
V)2((88V3 + 760V 2 -- 1364V -- 481)D:+ 2(44V 3 + 80472 - 

268800(1 - 

-1670V + 787)D~A- 4(157v 2 -  384v + 227)A 2 - 4 ( 1 5 7 v  2 -  384v + 227)A2) - 

5 

v)3((616v4 + 5232v 3 - 12538v 2 + 8306v - 1711)D 6 -  
64512000(1 - 

- 2(616v 4 + 5736v 2 - 15 864V 2 + 12345V - 2866)D4A + 

+ (616v 4 - 56V 3 - 12817v 2 + 15548V - 2976)D2A + 8(737v 3 - 856v 2 + 231v - 162)Aa)g 

Another  version of the simple form of Eqs (7.7) arises if it is required to satisfy the equations 

o4_-0, o4=0, a°_-0, a°=0 

Then V~ = 0 and V~ = -1/20, while the values of V ° and V4 ° as before, are defined by (7.9), Q~ and Q42 
are the same as in formulae (7.10), and 

Q] = 4 2 2 -  4 2 4 v -  33v 2, 6 
25200(1 - v )  2 Q2 = 20170 

Q~ = 216v 3 -  1758v2+ 2 7 6 8 v -  1231 

302400(1 - v )  3 

Q~ = 721 + 1027v - 268v 2 -  3v 3 

151200(1 - v) 3 

(7.12) 

In the equations thereby obtained there is no differentiation of U (or V) higher than the second order 
with respect to time and, consequently, when formulating the boundary-value problem, there is no need 
for additional initial conditions. However, as shown in Section 9, the Cauchy problem for these equations 
is incorrect. 

8. T H E  C H O I C E  OF T H E  P A R A M E T E R S  IN 
T 1 M O S H E N K O ' S  E Q U A T I O N S  

The values of T q and G in Timoshenko-type equations (7.8) were derived in [1]; if we change to the 
dimensionless variables (1.3) and (3.2) with scales (3.1), the values of Tqand G are obtained as follows: 

T~ ° = -1 2 1 1 0 0 1 
12KI, T2 = ] ~ + 6 ( l _ v ) K 2 ,  T4 = Q4 = 6 ( l - v )  

1 ( D~ A 
G = ~ g + e / l ' ~ 3  6 ( l _ v ) K 4 J g  

(8.1) 

where K 1 = g 2 = g 3 = g 4 = K is a certain coefficient; its value in Timoshenko's model is discussed, 
for example, in [4, 5]. In Reissner's model for the statics case K = 5/6. 
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We will write the values Kj. in relations (8.1), for which, in the case of free oscillations (F = 0, 
g = 0), Eq. (7.8) with coeffioents (8.1) is identical with Eqs (7.11) with accuracy o(eS), while in the 
case of oscillations under the action of forces applied to the plate surfaces (g ~ 0), it has an accuracy 
O(e3). We will put Kj = 50~j(v)/6 and require that the equalities T 4 = Q4, T2 = Q2 must be satisfied and 
also that there should be equality between the terms of order e -a, e and e 3 in Eqs (7.11) and (7.8) with 
coefficients defined by formulae (8.1). We then obtain 

O~l(V) = 420(1 - v) 6 
2 '  ( 0 2 ( V )  = 

422 - 424v + 33v 6 - v 

280(1 - v) 8 
2 '  ( ~ 4 ( V )  = 

c°3(v) = 223 - 166v - 22v 8 - 3v 

The functions c0j(v) are monotonic in the section [0, 0.5]; their values at the ends of the interval are 

o l (0  ) =0.99890, c0~(0.5)-0.99533; o2(0 ) = 1, c0z(0.5 ) = 1.09091 

o~3(0 ) --- 1.04089, co3(0.5 ) - 1.25561; 0 , )4 (0  ) = 1, co4(0.5 ) -- 1.06667 

Hence, the assumption that K = 5/6 does not necessitate any very considerable correction, namely, when 
introducing the coefficients Kj = 5o(v)/6 to obtain the equations of free oscillations of accuracy O(e s) • 7 
and the equations of forced oscillations due to the action of forces applied to the plate surface, of 
accuracy O(e3). At the same time, Eqs (7.8) with coefficients (8.1) whenK = 5/6 have an accuracy O(e 2) 
in the case of free oscillations, and accuracy O(e) in the case of forced oscillations. 

9. I N V E S T I G A T I O N  OF T H E  C O R R E C T N E S S  OF THE E Q U A T I O N S  OF 
F L E X U R A L  V I B R A T I O N S  

To investigate the correctness of the equations of flexural vibrations of accuracy O(e4), (6.40) of (5"3) 
accuracy O(e 6) and (7.7) for Q~, defined by (7.12), of accuracy and (7.11) of accuracy O(e°), it 
is sufficient to investigate the case of free vibrations (F = 0, g = 0). Consider the first three of these 
equations 

l) D~ U 2 ~0_2.  e ~d4tx u ,  2) D~U 2 2 2 2~0_2. = = e Q 2 D t A U  + • ~t~4 I~. U, 

3) D~U 2 2 2 2 0 2 4~2~2_2. 
= e Q 2 D t A U + E  Q4 A U+E ~4/..)tz~ U 

(9.1) 

where Q0, Q2, Q42 are defined by (7.10) and (7.12). Note that when 0 < v _< 0.5 the following inequalities 
are satisfied 

Q°<0,  Q~>0, Q ] > 0  (9.2) 

Since the derivatives with respect to the variable xl and x2 occur in these equations only as part of the 
Laplace operator, to investigate the problem of the correctness of the Cauchy problem it is sufficient 
to consider particular solutions of the form U = e °t-  ikxl. Substituting these particular solutions into the 
corresponding equations (9.1), we obtain the equalities 

1) 13 2 ~ 0  2 - 4  2 2 ~ 0  2--4 = ~24 e t~ , 2) 2 ( l + Q 2 ( e k )  ) = ~d4 e k ,  

3) 2 ( i  + Qaz(ek)2- a2(Ek)4) = a°E2k4 

It follows from (9.2) that when k > 0 is the first two 2 case 0 ___ 0 and, consequently, G is a pure imaginary 
quantity, i.e. the correctness condition is satisfied. In the third case 6 ~ oo, if ek approaches the root 
of the equation 1 + Q2(~)2 _ O2(Ek)4 = 0 and, consequently, the Cauchy problem is ill-posed. 

Consider Eq. (7.11) in the case of free vibrations. It has the form 

D~U = 2 .  ~ 4 ~ 4  2 2 e (~2oDt + Q z D t A +  Q°A2)U 
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The coefficients Q0 °, Q2 and Q0 are defined by (7.10). When 0 < v < 0.5 we have 

4 2 
Q0<0, Q2>0, Q ° < 0  

The equation Q~o 4 - (1 + Q2(Ek)2)(y 2 q- Q°E2k4 = 0 in ~ for all real k has four pure imaginary roots, 
and hence the corresponding Cauchy problem satisfies the necessary condition for correctness. 

10. C O N V E R S I O N  OF THE E Q U A T I O N S  TO A F O R M  W H E R E  THE 
R I G H T - H A N D  SIDE IS I N D E P E N D E N T  OF FAST D I S P L A C E M E N T S  

The procedure for constructing Eqs (2.7) for the problem of the vibrations of periodic plates, described 
in Section 2, is directly applicable when the right-hand side of F is independent of the fast variables y. 
With the exception of the case of a uniform plate, the right-hand side, as a rule, depends on the fast 
variables, for example, F = P(Yl, Y2, Y3)ge, where g is the acceleration due to gravity and e is a certain 
vector. 

To reduce the problem with the vector function F = F(t, Xl, x2, YI, Y2, Y3)) [y. = x./e, smooth with respect 
to the variables t, Xl, x2 and 1-periodic with respect to the variables Yl, Y2, to Ja pJroblem with the vector 
function F = F(t, xl, x2), smooth with respect to the variables t, Xa, x2, we construct the vector function 

such that 

LU - l~(t, xp X2) - F ( t ,  xp x2, Yl, Y2, Y3)lyj =x/~ (10.1) 

To do this we simultaneously seek the asymptotic expansions 

n n En 
F-  Z fn(t'Xl'X2)ly)=xjl~ ~' ~J- Z V (t, Xl, X2, Yl, Y2, Y3)lyj=x/e 

n>O n>-O 

(10.2) 

with U ° = U 1 = 0. We substitutes series (10.2) into relations (10.1). Equating coefficients of like powers 
of e, we obtain 

2 fD F, ,+2 LIU,+I LyyU = - LyyU + +LoU" = fn when n > 0  

3 3 3 3 3 3 2 
= - -  A i . - -  + - -  A q - -  , = LI Oxi( 'OYj) OYi( Oxj) L° "~ixi(AijG) - pD, (10.3) 

The operator Lyy is defined by formula (2.3) 
For each n it is sufficient to obtain at least one pair U n + 2, fn which satisfies relations (10.3). In many 

cases this chain of equations is solvable if f0 = (F) and fn = (L1Un + 1 + L0U n) when n > 0. The difference 
w = u - U  will be the solution of the equation 

Lw = -]~(t, xl, x2) 

1 1 .  S U B S T A N T I A T I O N  O F  T H E  E Q U A T I O N S  O B T A I N E D  

Using the example of Eq. (6.7) we will indicate the main features of the rigorous substantiation of the 
correctness of the equations obtained. 

Consider the boundary-value problem for the system of equations (1.1) in a plane uniform plate with 
uniform boundary conditions (2.1) and initial conditions 

ub__ o=0,  u,l,= o = 0  

We will denote by ~(T) the set of points (t, xl, x2, X3), lying in the zone 0 < t < T, and by ~o(T) the set 
of points (t, Xl, x2, 0), lying in the zone 0 < t < T. We will further assume that the vector function F = 
F(t, Xl, x2) satisfies the following conditions: 

(1) F 1 = F 2 - 0 ;  
(2) the third component F 3 of the vector F is finite and, after continuing it to zero, when t < 0, it 

belongs to HlSoc(R4). 
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It can be shown by the method of energy estimates that for the function V, which is the solution of 
Eq. (6.7), the following limit holds 

IIvIIH,(.o(T) ) ~ ct(r)llF3lJH~(ao(T)) (11.1) 

Here and henceforth ci(T ) a r e  certain quantities which depend only on T. 
Equation (6.7) can be regarded as having been obtained from the initial equation (3.3) by using 

the operation/3 (6.8) and dropping terms of higher order. It can be verified that, after applying the 
operation (/3)-1 to both sides of Eq. (6.7) we obtain a certain equation 

I O2V/Ot2 = L ' V +  F 3 

with the following properties. Terms of the order of ek (k = 0, ... , 4) in L' are identical with the 
corresponding terms in Eq. (3.3), and F~ = F 3 + O(e6). We put 

V = (0,0, V) r, F = (0,0, f3) r 

, q + l l + 1 2 = = .  
q+ll+12~ ~ V 

f l -  Z E l~l,12(y)[y=xt¢ ~ 
q+l I +12-<6 

Since, in the case of a plane uniform plate, system of equations (2.7) can be split into a system of 
equations in a91 and a92 and an equation in v3, the following inequality holds 

13/2 + 
IlL(u- fi)llz0(n(r)) < c2(Y)E (JJVlJ~(n0(r)) HF3IIH6(~0(T))) 

Taking the limit (11.1) into account, we rewrite this inequality in the form 

I lL(u -  ~)llHo(~(r)) ~ c3(T)EI3~IIF3IIH~(~o(T) ) 
Further, by the standard method of energy estimates we obtain that 

Ilu - o lI: (~(T)  ) ~ c4(Y)Et3/2lJF3ll.,(~o(r)) 
Hence we obtain the following estimate of the closeness of u3 and V 

II(u3} - vll.o<Oom ) = O(E6)Cs(T)E6IIF31]~(~o(T)) 
Condition 2, imposed on the function F3, can be replaced by a weaker one as a result of carrying out 
a more detailed estimate. 

The above constructions show that the a priori assumption that an asymptotic expansion of the solution 
u in a series of the given form in powers of E is justified under certain conditions. 
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